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ABSTRACT 

Variants of two basic infinite games of perfect information are studied. A,no- 
tion of continuous strategy for the player S (Size) is shown to be related to 
a notion of convergence norm for sequences of reals. With each such norm, 
a variant of each of the basic games is associated in which the size player has 
to see that each play obeys the norm. Restriction to choose only rational 
numbers is also imposed on S. Some games are completely solved, and in this 
case S has a winning strategy iff his set includes a perfect subset, and D has 
a winning strategy iff S's set is at most denumerable. Some other games, in 
which S has to choose only rationals and obey a norm, induce a hierarchy 
structure on the class of nowhere dense perfect sets, that is embedded coil- 
nally in the lattice of infinite sequences of integers modulo finite differences. 

0. Introduction and results 

Infinite two person games of perfect information over the real line were first 

introduced and studied by Banach and Mazur, and were subsequently modified 

and studied by various authors. See [2] for further references. Here we study a 

family of variants of two such games that were studied in [1]. 

Let X be a subset of R, the real line. We associate with X two basic infinite 

games of perfect information, F~ and FS(x), played by the two players S 

(Size) and D (Direction) as follows [1]: S chooses a real number So. Once sn is 

determined, sn+l = s~ + e~x~, where x~ is a positive number chosen by S, and 

en e ( - 1, 1} is chosen by D. In the game F~ D chooses en first, and then S 

chooses x,. In FS(x) roles are interchanged: S chooses x~ first, and then D chooses 

en. The sequence s = (s~: n < co) is a play in the game. S wins if s is con- 

vergent, and its limit - -  the outcome of the play - -  belongs to X. 

It is shown in [1] that F~ is a win for D if X is discrete, and a win for S 

Received December 16, 1971 

418 



Vol. 14, 1973 SIZE DIRECTION GAMES 419 

otherwise. It is also shown there that FS(x) is a win for D if  X is at most de- 

numerable, and that if FS(x) is a win for S then X includes a perfect subset. 

This article includes a completion of the solution of F~(X). We show that 

FS(X) is a win for S if X includes a perfect subset (Corollary 4.9), and that if it is 

a win for D then X is at most denumerable (Theorem 5.8). 

Our main purpose is to study some games obtained from the basic games by 

imposing certain restrictions on the way that S is allowed to play. We consider 

restrictions of two kinds: size restrictions and continuity restrictions. 

By a size restriction we mean a restriction imposed on S to play so that the 

elements s, constructed through a play belong always to a given countable dense 

set Q. Q should satisfy the condition that for every s t Q  and every x e R  

s + x e Q iff s - x E Q. This is needed in order to enable the play in F ~ to be 

carried on. We conveniently take Q to be the set of the rationals, but all our 

results hold for any other set satisfying the above requirement. 

The notion of a continuity restriction arises by an analysis of the notion of a 

continuous strategy for S in these games. It is natural to say that a strategy tr is 

continuous if the outcome of every play where tr is used can be approximated by 

a finite segment of the play. More precisely, a is continuous if for every play 

(s,:  n(co) where ~r is used and every ~ > 0, a natural number N exists so that if 

(s',: n (co) is another play where tr is used, and if  s, = s" for n < N, then 

[ l i m s . - l i m s s  < 5. a is uniformly continuous if the number N depends only 

on 5. 

A strategy for S in our basic games is actually a labeling a of the full binary 

tree 2* by reals, that satisfies certain conditions (Def. 2.0), one of them being that 

the sequence of reals obtained by restricting tr to any path in 2* is convergent. 

Thus, with each strategy a for S is associated a mapping t? of the set of all infinite 

paths in 2 * - - o r ,  equivalently, of Cantor's discontinuum C - - i n t o  R: ~ maps 

every path to the limit of the sequence labeling it. 6, considered as a mapping 

of the topological space C into R suggests another possible way to classify a 

strategy as a continuous one, namely: a is a continuous strategy iff t? is con- 

tinuous. It turns out that in our games, continuity in any of the above senses and 

uniform continuity do all coincide. 

By a convergence norm (con) we mean any sequence a = (a , :  n < co) of 

positive real numbers such that an+ 1 <= a, and lim a, = 0. We say that a sequence 

of real numbers s = (s,:  n < co) obeys the con a if for every n,m,m'~og, if 
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n < m, m' then I s,~ - s,,, [ < a , .  We show next that a strategy ~ for S is con- 

tinuous iff all the plays consistent with cr obey some fixed con a. The continuity 

restrictions we impose on S are nothing but such convergence norms. 

We consider the following games: 

,FD(X) (,Fs(X)) is the same as FD(x) (Fs(X)) except that S loses any play that 

does not obey the cona. 

~ ( X )  (~S(X)) is played as follows. At the beginning, S chooses a con a. Then 

he chooses So and a play (sn: n < e)) is then constructed as in FO(X) (F~(X)). 

S wins iff the play s obeys a and its outcome belongs to X. D wins otherwise. 

Each of the above games gives rise to another one, obtained from it by further 

restricting S by the size restriction, i.e., by making S lose any play s = (sn: n < e)) 

such that for some n, sn ~ Q. This new game is denoted as its ancestor, except that a 

subscript Q is added. Thus, for example, aFt(X) is the same as FS(x) except 

that S is restricted to move so that always s, e Q, and loses any play that does 

not obey a. 

We say that a set X is a win for  S(D) in one of these games if S(D) has a winning 

strategy in the corresponding game. Each of our games partitions the power set 

of R into three: the class of all sets X such that X is a win for S, the class of all 

sets X such that X is a win for D, and the class of nondetermined sets. We call 

two games equivalent if they define the same partition. Once the partition is 

shown to coincide with a familiar one, we say that the game is solved. 

Our results are summarized in Table 1. We u3e the following abbreviations: 

S(X) : X is a win for S 

D(X) : X is a win for D 

N(X) : X is at most denumerable 

P(X) : Every perfect set P has a perfect subset P '  such that P '  n X = ~ .  

I(X) : X is of the first category. 

P(X) : X includes a perfect subset. 

It is clear that .P(X) implies: not P(X) and P(R - X). 

Because of obvious implications, only the boxes marked with an asterisk need 

to be proved. Whenever those appear in the text, their consequences are stated 

in subsequent corollaries. 
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P(X) N(X) S(X) D(X) 

~D 

a FD 

F D a Q 

i-s 

f.s 

a Fs 

S(X) D(X) (.5) P(X) (.7) N(X) 

S(X) D(X) P(X) N(X) 

S(X) D(X) P(X) N(X) 

S(X) (*0 D(X) P(X) N(X) ~.9) 

S(X) D(X) (.6) P(X) (*s) N(X) 

S(X) D(X) P(X) N(X) (*'~ 

s(x) D(X) P(X) P(X) & I(X) 

S(X) ~.2) D(X) P(X) P(X) & I(X) <.1 x) 

S(X) (.3) D(X) P(X) I(X) 

Depends on (**) D(X) P(X) I(X) (*12) 

a and X 

Remarks and open problems 

Let ZF denote Zermolo-Frankel set theory without the axiom of choice AC, 

ZFC is ZF + AC, and CH is the continuum hypothesis. 

1. All the results stated in Table 1 are theorems of ZF. 

2. F D is equivalent to F~ and in both games, X is a win for S if it has an 

accumulation point, and a win for C otherwise [1]. 

3. All the games completely solved are equivalent, except those mentioned in 

Remark 2. These are the games ~o, ~ ,  oF o, ~ F s and F~. In each of them, 

X is a win for S iff X includes a perfect subset, and is a win for D iff X is at most 

denumerable. The first half of the last statement, holds for all the games listed 

in Table 1 except aFg and if X is denumerable, then X is a win for D in all these 

games. If neither X nor its complement include a perfect set, then X is non- 

determined in any of the games of Table 1 (Corollary 5.15; compare I2, Th. 1]). 

4. Solovay [4] showed that, assuming the existence of a strongly inaccessible 

cardinal, a model of ZF exists in which every uncountable set of reals includes 
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a perfect subset. It follows that one cannot prove in ZF that there is an uncountable 

X such that X is a win for D in either of ~s, ~g orS~. On the other hand, it follows 

from ZFC + CH that there is an uncountable X such that ~g(X) is a win for 

D [3]. The existence of such an X for ~s or a F Sis an open problem (see Remark 6). 

5. We shall prove the following two facts concerning F s" a Q "  

(a) Let X be a perfect set. Then there is a con a such that aFt(X) is a win for S 

(Theorem 4.8). 

(b) Let a be a con and X a perfect set. Then there is a perfect subset X'  of X 

such that aF~(X') is a win for O (Theorem 5.5). 

Let us denote by (a, X) _= (a', X ' )  the following statement: aF~,(X) is a win for 
�9 S t S lff,,Ft2(X ) and .F~(X) is a win for O iff . ,F~(X')  is a win for D. 

Define an equivalence relation E on the set of cons by: a E a '  iff for every X, 

(a,X) - ( a ' ,  X). Denote by [a] the E-equivalence class of a. The set of  all E- 

equivalence classes is partially ordered by: [a] < l [a ' ]  iff for every X, i f . ,F~(X) 

is a win for D then .F~(X) is a win for D. 

For cons a,a' we put a < - -2  a '  i fffor some n,n' eco, an+ k <= an'~+k for all k~o~. 

Let E' be the equivalence relation defined by: a E'a' iffa <--2 a '  and a '  <--2 a, and 

denote by [ 'a] the E'-equivalence class of a. < 2 naturally partially orders the set 

of  all E'-equivalence classes. 

One can show that E'  refines E, i.e., for every con a, [ 'a]  ~ [a], and that for 

any two cons a, b, [ 'a]  <2 [ 'b]  implies [a] <'1 [b]. 

PROBLEM 1. Are E and E' equal ? 

Dually, define an .~quivalence relation F on the power set of R by: X F X '  iff 

for every con a, (a ,X) - (a ,X') .  Let [X] denote the F-equivalence class of X. 

Partially order the set of all F-equivalence classes by: IX] __< 3 [X' ]  iff for every 

con a, if .F~(X) is a win for O then also .Fg(X')  is a win for D. This order induces 

a hierarchy structure on the power set of  R. By (a) and (b), this hierarchy is non- 

trivial. Moreover, one can show that the lattice of sequences of positive integers 

modulo finite differences is embeddable cofinally in the set of  E'-equivalence 

classes partially ordered by < 2. It follows (using A'C) that our hierarchy, even 

when restricted to perfect sets, embodies ascending chains of length at least c01. 

Observe that IX] < 3 IX ' ]  means that X'  is " thiner"  than X (in fact, X '  _~ X 

implies IX] _-< 3 IX'I) .  It is easy to see that every set X with a nonempty interior 

is a win for S in aFg(X) for every con a; thus, these sets do all belong to the __< 3- 

minimal F-equivalence class. 



Vol. 14, 1973 SIZE DIRECTION GAMES 423 

PROBLEM 2. IS there a set X of positive Lebesgue measure such that ~F~(X) 

is a win for D ? 

Of  course, it is sufficient to consider only perfect nowhere dense sets X. 

6. Concerning the role of D in the games ar "s and I ~s, we know that X is a 

win for D for every denumerable X. (This follows from [1, Th. 2]. A direct 

simple proof is actually presented here, Lemma 5.1.) 

PROBLEM 3. Assume that aFS(X), or even that ~S(X), is a win for D. Does it 

follow that X is at most denumerable ? 

The answer is not known even if CH and AC are assumed (compare Remark 3). 

All we can say at present is that, under each of the above assumptions, X is of  

the first category and does not include a perfect subset (hence, of  measure zero, 

if  measurable). If  Fs(X) is a win for D then, moreover, every perfect set has a 

perfect subset disjoint from X. If aFS(X) is a win for D, all we can say is that 

every perfect set has a subset of the power of the continuum disjoint from X 

(Corollary 5.14). 

The paper is organized as follows. In w the various notions of a continuous 

strategy for S are shown to be equivalent. The relation between such a strategy 

and a con is established. All statements incIuded in the third column of Table 1 

follow easily, an exception being ( '8),  which is [1, Corollary 2]. 

In w we study some auxiliary open games played by D and S. We obtain some 

technical results that are used in the sequel. 

Section 4 is dedicated mainly to prove the assertions of the first column of 

Table 1, except (*4). ( '1),  ( '2),  and (*3) are respectively Lemma 4.4, Theorem 4.8 

and Theorem 4.7. The proof of (*3) is based on an idea of Jan Mycielski. (*2) is 

actually (a) of Remark 5. 

In w the other statements are proved. One exception is ( '6),  which is [1, Th. 2]. 

Another proof for it is given in [3]. (*4) follows from the more precise statement 

(b) of Remark 5 and from (*2). (b) is actually Theorem 5.5. 

This paper is based on portions from the author's dissertation, prepared at the 

Hebrew University. I take this opportunity to thank my advisor, Azriel Levy, 

for his kind supervision. I am indebted to Jan Mycielski for many helpful remarks, 

and to Saharon Shelah for interesting suggestions and conversations. 

1. Notation 

w, Q, Q+, R and R + denote respectively the set of natural numbers, the set of 
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rationals, the set of positive rationals, the set of real numbers and the set of 

positive reals. An ordinal number is identified with the set of his predecessor. 

If  A, B are sets, ] A [ denotes the cardinality of A, and A - B is the set theoretical 

difference of A and B. 

If  A is a set, n < co, then A" is the set of all sequences of order type n of elements 

from A. A* = u,<o'A". If  ~ ~ A ", we write l~ = n. If ~, r/e A*, then ~ �9 r/denotes 

the concatenation of ~ and r/. ~ -< ~ if for some r/e A*, ~ = ~ �9 r/. For ~ ~ A ~ 

(n _< co), ~I-[k<_n Ak is defined by: ~(k) is the restriction of~  to k. Thus, i f k  < co, 

k < 10q then ~(k) = (~(0), ..., ~(k - 1)). P c A* is a path if P is a maximal 

subset of A* linearly ordered by -<. A ~ is considered also as a topological space. 

The topology is the one generated by the sets Ur l e A * ,  where Ue = { ~ A ' ~  

~(l~) = ~}. 

If  A ___ R, then ~/is the closure of A, intA is its interior, CONA is the convex 

hull of A and mA is its Lebesgue measure. If  A, B = R, A < B means a < b for 

a l l a ~ A ,  b e B ,  A + B =  { a + b : a ~ A ,  b e B } . A < b , A + b s t a n d s f o r A < { b } ,  

A + {b}, etc. The distance between A and B is denoted by d(A,B), and defined 

by d(A,B) = i n f { ] a -  b l :  a ~ A ,  b~B}.  We write d ( s , a )  for d({s},a). 

A convergence norm (con) is a sequence a = (a . :  n < co) of positive numbers 

such that a.+a _-< a. and l ima.  = 0. s = (s.:  n < co)~Ro" obeys the cona if for 

every n, m, m' e co, n < m, m' implies [s~ - s,., ] < a..~ 

2. Continuous strategies for S 

DEFINITION 2.0. A strategy for S in F D (F s) is a mapping ~: 2* o R  that 

sat isfies: 

(0) (a(~(n)): n < co) is a convergent sequence for every ~ ~ 2% 

(1) tr(~. (0))  < a(~)< tr(~. (1)) for every ~ 2 " .  

((2) a(~) - tr(r (0))  = a(~.  (1))  - tr(0 for evey ~e2*.) 

A strategy for S in F~(F~) is similarly defined, except that now tr is a function 

from 2* into Q. 

Let tr be a strategy for S. Then ~: 2 o' ~ R, L(tr) c R and P(tr) c Ro" are defined 

as follows: 

~(a) = limtr(~(n)) 

L(a) = {ff(ct): a ~ 2 '~ 

P(tr) = {<a(~(n)): n < co): ~ e 2~ 
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t~ is the outcome function, L(a) is the set o f  outcomes and P(tr) is the set o f  plays 

associated with tr. 

tr is a winning strategy in FD(X), FS(x),  F~(X) or F~(X) if it is a strategy for 

S in the corresponding game and L(a) ~ X. 

Let a: 2* ~ R satisfy (0). Then t~ is well defined. We say that cr is continuous if 

t~: 2 ̀o ~ R is continuous. 

Let tr: 2* ~ R be any function. We say that cr is uniformly continuous (u.c.) if 

the following holds: For every 8 > 0, there exists a natural number n such that 

for every ~ e 2", (, ( ' e  2" Ir ( ' )  - a(~.  ()1 < 8. 

It is clear that if tr is u.c., then (0) is satisfied, so 5(e) is well-defined for every 

~ 2  ~ 

Note that every strategy for S in Fs(F~) is also a strategy for S in FO(F~). 

L~MMA 2.1. Let  tr be a strategy for  S in F~(F~). Then tr is continuous i f  and 

only i f  tr is uniformly continuous. 

PROOF. i) Assume that tr is continuous, and let e > 0 be given. We shal 

find n e co as required in the definition of u.c. 

For a ~ 2 ~ put V~ = {~' e 2~: 15(a') - tT(~) [ < �89 Let n~ ~ co satisfy: 

U~},.) __q V~. Since e e  U~(,,), {U~(,,): cte2 ~ is an open cover of 25  Thus there 

are Co, "", ek- 1 SO that 

(*) 2 ~  U ur ). 
O<-_i<k 

Put n = max {n,, : 0 < i < k}. We claim that this n satisfies the requirements. 

Assume that r  ~, ~ '~2" ,  and a(~.  ~ ' ) -  (r(r ~) >__ e. Define flo, flt 82"  by: 

~o(I~ + I~) = ~ . ~, flo(m) = O for m >  l ~ + l ~  

f l t ( l~+ l~ ' )  = ~ . ~ ' ,  f lo(m)= 1 for m >  l~+ l~ ' .  

By (1) of Definition 2.0, we have for m > l~ + l~, l~ + l~': 

t~(flt) - t~(f lo)  > o ( f l l (m))  - o(f lo(m))  >= o(~.  C ) - 0"(4" ~) ~ 8. 

On the other hand, since ~ ~ 2 n, we must have, by (*), ~(G,)  "( ~ for some i, 

0 < i  < k .  Thus, Ur  But f lo,f l l~Ur so 5(fl l)- t?(flo) < 

< [ 6(fll) - tT(~,) I + ] 6(~,) - 5(flo) ] < e, a contradiction. 

ii) Assume that o" is uniformly continuous. Let a ~ 2 '~, 8 > 0 be given. Pick n so 
that for r ~ 2", ~, C' ~ 2", ] a(~.  C') - a (~ .  ~) ! < �89 Then for every a ~ U~(,) we 

have: 
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] ~(=') -- t?(~) [ = I lim a(~'(m)) -- lim a(~(m)) ] 

< lim l - tr(~(m))l < �89 < e. 
,_<,, [] 

Observe that we have shown, in fact, that if any tr: 2* --* R is uniformly con- 

tinuous, then ~ is continuous. The other direction need not be true, and (0), (1) of 

Definition 2.0 are needed for it. (0) alone is not sufficient as the following example 

shows. Define a: 2*--* R by a((0)" �9 (1))  = 1, n ~ % and tr(~) = 0; otherwise, 

ti(~) is defined and equals 0 for every ~ e 2 '~ so t~ is continuous but it is clear that 

a is not uniformly continuous. 

LEMMA 2.2. Let  a be a continuous strategy for  S in F ~ Then L(a) is a 

compact perfect set. 

PROOF. Since t? is continuous, L(tr) is compact. We have to show only that 

L(a) has no isolated points. Let t?(~) be any member of L(a), and e any positive 

number. By Lemma 2.1, we may assume that a is u.c. Let n satisfy: if ~e2", 

~,~' ~ 2* then [ tr(~. 0 - a(~.  ~ )] < �89 Define rio, ril E 2 o' by rio(n) = ri~(n) 

= 8(n), rio(m) = O, ril(m) = i for m > n. Then ~(rio) < a(ril) (by (1) of De- 

finition 2.0) and they both belong to (~(~) - e, ~(~) + ~). [] 

COROLLARY 2.3. I f  S has a continuous winning strategy in any of FD(X), 

F~(X), FS(X), Fg(X), then X includes a perfect subset. 

The relation between continuous strategies for S and cons is stated in the next 

theorem. 

THEOREM 2.4. Let a be a strategy for  S in F D. Then a is continuous i f  and 

only i f  there is a cona such that every s in P(a) obeys a. 

PROOF. i) Assume that a is a continuous strategy for S in F ~. By Lemma 2.1, 

a is u.c. and hence the following definition makes sense: Pk is the least number 

n E o9 such that for every ~ ~ 2" and for every ' * ~,~ ~ 2  , ] a ( 0 - a ( ~ ' ) ]  < 1/(k+X). 
Define now: n o = p o ,  n k + l = m a x { n k + l ,  Pk+l}, b o = l + m a x { [  s - s " [ :  

s',s"e L(a)}, bk = 1 / k  for k > 0. Lastly, define the con a = ( a , :  n < co> as 

follows: 

an= bo 0 =< n < no 

a n = b k +  1 nk < n < nk+l ~ _  �9 

It is clear that every s e P(a) obeys a. 

ii) Assume that a = (a , :  n < co> is a con such that every sEP(tr) obeys a. 
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Let 5 > 0, ~ e 2 ̀o be given. Let n e m satisfy 2a, < e. We claim that U~(n) ~ 

K-I ((~(a)_ e, # (a )+  5) and hence, a is continuous. Indeed, assume that 

a ~ U~(,). Then, since both <a(8(m)): m < to> and <a(8'(m)): m < r obey a, 

we have, for m >= n (recall that 8(n) = ~'(n)): 

[a(a'(m)) - a(~(m)) [ < [ a(a'(m)) - cr(a'(n)) [ + ]a(a(n)) - a(a(m))] < 2a,, 

hence 

1#(~') - ~ ( ~ ) [  = l i m  [ a ( ~ ' ( m ) )  - a(8(m))[ <= 2a, < 5. 

[] 

COROLLARY 2.5. Let a be a strategy for S in either of the games F ~, F~, F s, Fg. 

Then a is continuous iff for some cona, every element of P(a) obeys a. 

COROLLARY 2.5 justifies the somewhat loose statement, that FD(X), ~.(X),  FS(x), 

I*~(X) are obtained respectively from F~(X), F~(X), FS(x), F~(X) by imposing 

on S the restriction to use only continuous strategies. 

3. The games G(X; s; n) and GQ(X; s; n) 

We study here a family of auxiliary open games which are the main tool in our 

subsequent study of the variants of F s. 

Let X be a set of real numbers, s~R  and n < o~. The game G(X;s;n) 

(GQ(X;s; n)) is played by S and D as follows. S chooses Xo e R + (Xo e Q+) and 

then D chooses eoe { -  1, 1}; S chooses xl e R + (xl e Q+) and then D chooses 

el ~ { -  1,1}, and so on. Put Sk = S + E~<keiXi. S wins if for some 0 < k =< n 

k < co, s k e X. D wins otherwise. 

A neat solution of the games G(X; s; n), Ge(X; s; n) is formulated in terms of 

two operations on the set of reals that we define now. 

DEFINmON 3.0. Let X _ R. Then: 

TX = {�89 + x"): x', x" ~ X} 

TaX = {}(x' + x"): x', x" e X and x' - x" e Q}. 

T"X, T~X are defined for 0 < n < co by: 

T ~  = T~X = X. 

T.+IX = T T . X .  .+1 T~ X = Ta T~ X. 

T'~X = [,.J T"X. T~X = U T~X. 
" I < 0 )  t l  < O.) 
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p(s), po.(s) are defined for s ~ R by: 

p(s) = rain {n: s E TnX} if s e T~'X 

pQ(s) = rain (n: s ~ T~ X} if s ~ T~X 

p(s) = og(pe(s) = co) if s q~ T'~ (s (~ T~X). 

From Definition 3.0 one easily derives: 

PROPOSITION 3.1. (i) I f  p(s) = n + 1 (pQ(s) = n + 1) then for some 

x ~ R+(x ~ Q+), max {p(s + x), p(s - x)} < n (max {pa(s + x),po.(S - x)} < n). 

(ii) I f  p(s) > n + 1 (po.(s) > n + 1) then for every x e R + (x ~ Q+) there is an 

e e { - 1,1} such that p(s + ex) > n (pQ(s + ex) > n). 

(iii) I f  p ( s )= og(pQ(s)= 09) then for every x ~ R  + ( x e Q  +) there is an 

e e { - 1,1} such that p(s + ex) = co (pc~(s + ex) = ~o). 

THEOREM 3.2. G(X;s;n)  (Go.(X;s;n)) is a win for S i f  s e T " X  ( s e T ,  X )  

and is a win forD otherwise. 

PROOF. Optimal strategies for S and D are suggested by Proposition 3.1. 

We shall give the proof  for G(X; s; n); the proof  for GQ(X; s; n) is its "Q-analog".  

Assume that s ~ T"X.  If  n = 0 then s ~ X and hence So E X always, so the game 

G(X; s; 0) is a win for S. I f0  < n, we may assume n < co, and by Proposition 3.1 (i), 

$ can choose x ~ R  + so that p(s + x), p ( s -  x ) <  n. Continuing this way, he 

enters X in at most n moves. 

Assume that s (E T"X. I f  n < o ,  Proposition 3.1 (ii) tells us that for any x e R + 

chosen by S, D may finde~ { - 1, 1} so that p(s + ~x) > n. Continuing this way, 

D may avoid X during the first n moves, and hence G(X;s;n) is a win for D. 

If  n = co, Proposition 3.1 (iii) tells us that D can ensure that Sk~ T~ for all 

k < ~o, and thus, again, G(X;s;n)  is a win for D. [] 

Two special kinds of X will interest us later; first, X is a union of two intervals, 

and second, X is finite. 

Assume first that X = Xo u (Xo + d) for some Xo _c R, d e R. Then 

2" k 
T"X ~ [_J Xo + ~ d  

k = O  

2 

and if d ~Q, then T~X _~ (-J (Xo + k /2"  d). Hence, if g is an open interval, 
k=O 

m g =  a > O, d e Q  + and X = 0 u ( g  + d), then for n such that 2ha > d we have: 
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T~X  -- CON X. 

Using Theorem 3.2, we get: 

LEMMA 3.3. Let g, g' be nonempty open intervals. Then there is a natural 

number n such that for  every s e C O N X ,  Go(g w g ' ; s ; n )  is a win for  S. The 

least such n is denoted n(g,g').  

Next we want to show that if X is finite and X' is obtained from X by moving 

each of its elements by no more than 6, then also T"X is obtained from T"X 

by moving each of its elements by no more than 6. 

Let y,  be a real variable for each n < co. Define an increasing chain ~-" of sets 

of real valued functions by ~-o = {y,: n < co}, ~-,+1 = {�89 + f , ) :  f ' , f " e ~ " }  

and ~ = U,<,o~-". For f e ~  ~', s u p ( f ) =  co is defined by: sup(y,) = {n}, 

sup (�89 ( f '  + f " ) )  = sup ( f ' )  k3 sup ("). I f  X = {Xo,'",xk- x } c R is a finite indexed 

set and f e ~  -~ sup(f)__c_ {0, ..., k - 1 }  = k, then f(Xo,. . . ,Xk_ 0 is the real 

Put ~, k ~ { f  : sup ( f )  = k}. number obtained by substituting x~ for y~ in f .  ~"  = ~-" 

One proves by induction 

PROPOSmON 3.4. i) I f f e  ~,~" then 0 < [sup(f)[  < 2". 

(ii) I f  fe~,~" and s u p ( f ) =  {io,'..,i~-1}, then there are positive natural 

numbers mo, . . . ,mk_l  such that ]~O~i<km~ = 2" and 

m o  . i n k -  1 
f = --~Yio + "'" + ~ Y i ~ _ ~  

. ~  is finite for  n , k  <co. In fact ,  I ~ = (2; + k -  1) (iU) 
- - 1  

1 

(iv) / f  x = {Xo, ".., Xk_l } o R  is a.finite indexed set, n < co, then 

T"X = ( f ( X o , . . . ,  x k -  

LEMMA 3.5. Let X = {Xo, . . . ,x ,_l}  be a finite indexed set, 6 > 0 ,  n <co be 

given. Then 

z"u [x-6,x+6]= U [x-6,x+6]. 
x ~ X  x ~ T ~ X  

PROOF. i) Assume that s ' e  T n Ux ex [x - 6,x + 5]. By Proposition 3.4 (iv), 

there is an f e ~ ,  x " e U x , x [ X -  6, x + 6], 0 < i < k, such that s' =f(x~,. . . ,  x~_ 1). 

Moreover, f and x~ can be chosen so, that x'i e [ x i -  6, xi + 6], 0 < i < k. 

Assume it, and put s =f (Xo, ' " ,Xk_l ) .  By Proposition 3.4 (ii), there are 

ao,...,a~_ 1 so that 0 < a i, ~,O~_i<kai = 1, and f = aoy o + ... + ak_tyk_ 1. It 
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follows that [ s - s ' ]  = [Zo~_,<ka,(x,-x;) I <= ,5. ~.O<_i<kai----t~. But s e T " X ,  

so  s' e U x  ~ r"x [x  -- ~, x + ~]. 
ii) Assume that s' e Ix - ~, x + ~] where x e T~X. Then s' = x + ~' for some 

- c5 =< ~' =< ~. Let f e ~'~ satisfy x = f (xo ,  "", x~_~), and assume that 

f = aoYo + "" + ak- lYk- l ,  O <= ai, ZO<=i<kai = 1. Let x [ e [ x ~ -  ~,xi + 5] be 

' = f (Xo , . . . ,Xk_ l )eT"  Uo~t<k[Xi ~,x i +f i ]  and defined by x~ x~ + 8'. Then ' ' 

f (Xo, . . . ,x~_l)  = ao(X o + 6') + ... + ak_~(Xk_l + 6')~ = f(Xo, ..., X,_X) + tS' = 

= X+tS'  = S'. Thus, s ' e T " ( . J ~ x [ X - ~ , x + 6 ] .  [] 

4. The role of S 

In w it was shown that if X is a win for S in any of our games where he is 

allowed to use only continuous strategies, then X must include a perfect set. 

Here we shall show that the converse is also true, an exception being the games 

,F~(X), that are treated in the next section. 

DEFINITION 4.0. A binary-interval-system (bis) is a function J defined on 2* 

whose values are closed nonempty intervals satisfying: 

J (~ .  (0)) ,  J (~ .  (1) )  = J (O 

J (~ .  (0 ) )  < J (~ .  (1)) .  

The kernel o f a  bis J, K J, is the perfect set defined by: 

K J =  ~ U J(~). 
n < t o  ~ e 2  n 

We say that a bis J obeys a con a = (an: n < co) if for all neco,  ~E2n :  

mJ(~) < a n . 

Observe that if J is a bis, then int J (O # ~ for all ~ e co, and d(J(r �9 (0)) ,  

J ( ~ . ( 1 ) ) ) > 0 .  Also, if s = ( s n : n < c o ) e R  ~ satisfies, for some ~ e 2  ~, 

s, e J(~t(n)), and if J obeys a, then s obeys a. 

DEFINITION 4.1. Let X ~ R .  Then H(X) denotes the set of  all real numbers s 

such that for every e > 0, (s - e, s) c3 X # ~ and (s, s + ~) c~ X # ~ .  

LEMMA 4.2. Let X be a perfect set. 

i) l f  a is a con, J is a his that obeys a, and for every ~ e 2* the endpoints of  

J(O belong to X,  then K ~ X.  

ii) H(X) ~_ X,  H ( H ( X ) ) =  H(X),  and X -  H(X) is at most denumerable. 

iii) For every con a there is a his J such that J obeys a and for every ~ e 2 * ,  

the endpoints of  J(r belong to X. 
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PROOF. i) Observe that K J  = U~ ~ z~'nn<j(~(n)).  Since J obeys a, An,: o,J(~(n)) 

is a singletone whose only element is a limit of a sequence of elements of X, hence 

belongs to X. 

ii) We note first that X - H(X)  is always at most denumerable [-2, p. 325]). 

H(X)  ~_ X whenever X is closed. H(H(X))  c_ H(X)  is also clearly true of any 

X _ R. Assume that s ~ H ( X )  and e > 0. We know that ( s -  e,s) A X  # ~ .  

But X is perfect, so (s - e, s) O X has the power of the continuum. It follows that 

(s - e, s) N H(X)  # ~ .  Similarly, (s,s + e) n H(X)  # ~ .  Thus s ~ H(H(X)).  

iii) Define by induction on n ar br for ~ ~ 2 n as follows, a,,  b,  ~ H(X)are  

arbitrary elements so that 0 < b , -  a ,  < a o . Assume that ar b, are already 

defined, 0 < br - a,, ar br ~ H(X)  for r ~ 2 ~. By H(H(X))  = H(X) ,  we can find 

a,.<~>, b~.<o>~H(X ) so that ar < b~.<o > < ar < bcand b~.<o > - a,, 

b , -  ar < a~+ 1. Put also a,.<o > = a,, br162 > = b~. Clearly J(~) = [a,,b,] 

is a bis satisfying the requirements. [] 

DEFINmON 4.3. Let J be a bis and assume that J(~) = Ea~, br ~ ~ 2*. Then 

Fa is the function defined on 2* whose values are open nonempty intervals given by: 

Fa(~) = (br <o>,a,. <1>). 

Thus, Fs(~) = J(Q, and {Fs(~): r e 2*} is a disjointed family of open intervals 

included in CON KJ and whose union is disjoint from KJ. 

We shall now prove assertions of the form " i f  X is perfect, then X is a win 

for S in a certain game". In each instance we shall actually present a strategy a 

such that for a suitable bis J that satisfies the conditions of Lemma 4.2 (i), 

K J  = L(tr) (see Definitions 4.0, 2.0). 

LEMMA 4.4. I f  X is a perfect set, a a con, then aFg(X) is a win for  S. 

PROOF. Let J be any bis that obeys a such that the endpoints of d(O belong 

to X for all ~ e 2*. A winning strategy for S is any function tr: 2* ~ Q that satisfies 

COROLLARY 4.5. I f  Xincludes a perfect 

r~(X) ,  ~~  is a win for  S. 

[] 

set, then any of  .F~(X), .FO(X), 

The state is different in the case of the variants of F s. The analog of Lemma 4.4 

does not hold. If, however, we either release S from the size restriction or keep 
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this restriction but let him choose the con a, then he has a winning strategy for 

every perfect set. The next proposition will be used in the proof of the first of  

those results. 

PROPOSITION 4.6. Let {t;: (~  [..JO<k<n2k}, {t~: (~  [..JO<k~n2 k} be two indexed 

systems of  real numbers satisfyin9: 

t~ = �89 + k'<l>), t ; '=  �89 > + t'~, <1>), l( < n. 

I f  f o r  every ~ ~ 2 n, I t S -  tr ] < then for  every ~ [.J0=<k~.2 k, [ t~-  tel < 6. 

The proposition is proved by a straight-forward induction on n. 

THEOREM 4.7. I f  X is a perfect set, a is a con, then .Fs(X) is a win for  S. 

PROOF. Let J be a bis satisfying the conditions of Lemma 4.2 (iii). For every 

~ 2", I~ -< n, define tr as follows: 

tr162 is an arbitrary member of  J(~). 

(*) tr 1 = �89162 <o>,n + tr d>,n)- 

One shows by induction that k, ,  ~ J(O for every n, lff < n. It follows by 

Proposition 4.6 that for l~ <_ n < m,m' ,  we have (since J obeys a): 

I t~,m -- tg,m" I < an. 

In particular, (tr Ir < n < co> is a convergent sequence for every ~ e2*. Put 

(**) a(~) = lira tr 
n 

We have to show that (1), (2) of Definition 2.0 are satisfied. Since t~.. e J(() for 

( e2* ,  I( < n, we have: tr <I> n--tq �9 (0),n > de > 0 for n __> l~ + 1, where 

d~ = d (J (~ . (O) ) , J (~ . ( l> ) ) .  Hence also a(~.  <1)) - o-(r <0>) > 0. Also, by 

(*), (**) a(~) = �89 �9 (0))  + a(~.  (1))). It follows that (1), (2) of  Definition 2.0 

hold, so tr is a strategy for S in aF s. 

[] 

Observe that the strategy a given in the last proof is uniquely determined by 

the bis J, i.e., it is independent of the choice of the elements tr in J(~). It is 

possible, given a perfect set X, to construct J so that J obeys a, K J  c X,  but so 

that the associated tr will take no rational value. 

THEOREM 4.8. I f  X is a perfect set, then ~ ( X )  is a win for  S. 
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PROOF. 

that KJ ~_ X. For every ~ ~ 2", put 

Let J be a bis that obeys, say, the con (1/(n + 1): n < co) and such 

n(Fj(~. <0>), F j (~ .  <1>)) 

max {n~: ~ e 2  ~} 

E Pi. 
i n n  

for k. < m < k~+~. 

Pn = 

k n - -  

Define a con a by: 

1 
a m n + l  

(see Lemma 3.3, Definition 4.3) 

(This means that if ~ e 2 n, then S is able to make at least p, moves in J(~) without 

violating a). 

By Lemma 3.3, S has a winning strategy in Go(Fj(~ �9 (0))  t.)Fj(r �9 (1));  s;p,,) 

for every ~ E 2* and s e Fj(~) c CON(Fj(~ �9 (0))  u Fj(~ �9 (1))). A winning 

strategy tr for S in I~(X) is the following one: S chooses a as his con, and any 

rational So = s ,  e F j ( ~ ) .  Then he follows his winning strategy in the game 

GQ(Fj((O))t.)Fj((1)); S , ;  Po), and falls after at most ko moves into 

S,o = s~> e Fj( (e))  ~ Q, r o < ko, for some ~ e 2. It is clear that for 0 N j < ro, 

sj~ CON (Fj((0)) u Fj((1))) c J(tk). Assume that for r ~2", r,-1 < k , - l ,  

s,._, = se~Fs(~)c5 Q is already attained. Then S follows his winning strategy 

in GQ(Fj(~ .(0)) w Fs(~. (1));  sr p,) and reaches s,=sr ~ Fj((~.(8)) n Q in 

at most p, moves which all lie in J(~). Thus r, <- k,. It is clear that a is a winning 

strategy for S in ,F~(X), since P(~r) (see Definition 2.0) includes only sequences 

that obey a. It follows that i~(X) is a win for S. [~ 

COROLLARY 4.9. I f  X includes a perfect subset, a a con, then any of ,Fs(X), 

~S(x), ~ ( X ) ,  FS(x) is a win for S. 

5. The role of D 

We prove here results of two types. Results of the first type state that a certain X 

is a win for D in a certain restricted game. Results of the second type state that if 

X is a win for D in some game, then X is not too big. We start with results of the 

first type. The following notions are useful. 

DEFINITION 5.0. If  z, S ~ R then e E { -  1, 1} is a recoil from z at s if ( s -  z) .  e > 0. 

If  a = (a , :  n < co) is a con, t/e R*, then 9,QI) is an open interval, defined by: 
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# , ( ~ ) = R ,  and if  l q = n ,  s ~ R ,  then g , ( r / . ( s ) ) = # ~ ( r / ) ~ ( s - a , , s + a , ) .  

rl = (So, . . . , s , - 1 )  obeys a i f  si~g~ for i < n. 

Clearly, s e R ~ obeys a iff s-(n) obeys a for all n ~ o9. 

LEMMA 5.1. l f  X is denumerable ,  then ~ ~  is a win f o r  D. 

PROOF. Assume that X = {z,: n < co}. Let a = (a , :  n < to) be the con chosen 

by S, and So, Xo his first move. Then D makes eo a recoil from z o at s o. Thus, 

sl = So + eoXo satisfies Is1 - z o I = 2bo > 0. Next D picks no, the least n such 

that an < bo, and makes e~ a recoil from Zo at s~ for i < no. Assume that So,..., s~_~ 

are already played so that this sequence obeys a, and that x,~_~ > 0 is chosen by S. 

Let bk----- ~ X n k _ , n k ,  =min{n > nk_ 1 : a, < bk}. Then D makes ei a recoil from z t 

at s~ for n k_ 1 "( i < n k . 

Assume that a play s = (s,:  n < 09) is obtained while D played following this 

strategy, and s obeys a. We have for m >_ n k : 

SmUOa(s(m))  ~_ (Snk -- a.~, s.k + a.k); 

hence, ] z k - S m  [ >= bk > O, and thus the outcome of s does not equal any member 

of X. 
[] 

COROLLARY 5.2. I f  X is at most  denumerable ,  a is a con, then any o f  aFt (X) ,  

~ I*~(X), I~D(X) is a win f o r  D. 

We mention here that if S is released from any continuity restriction (i.e., in the 

games F D, F ~  then X is a win for D only i fX  is discrete [1, Th. 1]. By Theorem 5.6 

below, Lemma 5.1 cannot be improved. 

Rather surprisingly, the scope of D in the games aF~ is much wider. The key 

fact is the following one. Assume that (q,: n < 09} is any fixed enumeration of Q. 

LI~MMA 5.3. Let  a = (a , :  n < o9) be a con. For each n~o9, let F n be a closed 

set. Le t  k = (k , :  n < o9> be a sequence o f  natural  numbers  sat is fy ing:  

(*) ak. < m v f o r  every component  g o f  R - F~. 

(**) q, ~ T k"F~. 

Let  X = O,<,~Fn. Then  aFt(X) is a win f o r  D. 

PROOF. Assume that S chooses So = q,.  By (**) and Theorem 3.2, D has a 

winning strategy in G(Fn; q,; k,). Following this strategy k n moves, D makes sure 

that sk. ~ F , .  Thus, Skn ~ # for some component g o f R  - F , .  If  (sk. - ak. , s k + ak. ) 
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has a positive distance from F. ,  S already lost the play. Otherwise, by (*), there 

is a unique zeF,  such that for 6 > 0, 5 = I s k -  z I = min{lskn-z'l: z ' e  F,}. 

D picks re09, k, < r, so that a, <_ 5, and makes 8t a recoil from z at st for 

k, __< i < r. Let ~/E R* be (So, '" ,  s,). Since g,Q1) c (s, - a,, s, + a,) n (Sk. -- ak., 

Sk. + ak.), it follows by (*) that g,Q1) has positive distance from F,  (or else it is 

empty), hence again D won the play. 
[] 

REMARK 5.4. Let oF*(X) be the same as,FS(X), except that S is restricted to 

choose So e Q. Lemma 3.3 actually holds for ,F*(X) instead ofoF~(X), as we used 

in the proof only the fact that S starts with an element of Q. The same is true 

for the next theorem, and this should be compared with Theorem 4.7. 

THEOREM 5.5. Let a be a con, X a perfect set. Then there is a perfect subset X '  

o f  X such that oF~(X) is a win for  D. 

PROOF. By Lemma 5.3 and Lemma 4.2, it is sufficient to construct a bis J such 

that J obeys (3-" :  n < 09), the endpoints of J(r belong to X for every r  

and a sequence (k , :  n < 09) so that (*) and (**) hold, where Fn = U r  E2, ,J(~) �9 

Let a§ b§ ~ H(X)  (see Definition 4.1) satisfy 0 < b§ - a§ < 1, qo ~ [-a§ b§ 

Put J ( ~ )  = In§ b,]. 

Let ~o,r ~z ~- '-1 be the lexicographical ordering of 2 .-1. Assume that 

J(r = last, bet] is already defined so that ar162 0 <=i < j < 2 "-1 

implies J(~i) < J(~j), and mJ(~t) < 3 -(~-1) �9 

Let S. = {st: 0 < i < 2"} satisfy: 

(o) steH(X) 
(1) i < j  implies si < sj 

(2) szi,s2t+leJ(~i),  0 <= i < 2  n - 1  

(3) S~ is linearly independent over Q. 

It follows from (3), by Proposition 3.4, that Q n T~S,  = ~ .  Define d,, k,, 5, as 

follows: 

(4) 3 d . = m i n { [ s ' - s " [ : s ' , s " e S , }  

(5) k~ = min{m: am < d,} 

(6) 25. = m i n { 2 d . , m i n { l q . - s l : s ~ T k " S . } } .  

By (6). q, ~ U k IS -- 5., S + 5.]. By Lemma 3.5, we deduce: 
$ ~  nSn 

(7) q.r 
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Choose now ag~.<~>, bei.<~ >, 0 __< i < 2 n-l,  8~2 so that: 

(8) ae,.<~>, be.<~>en(x) r~J(~i) 

(9) ae, .<o> < s2i < b~i .<o> < ae, .<1> < s2i+1 < be,.<1 > 

(10) be, .<,> - ae, .<,> < ~Sn 

and 

(11) J ( ~ .  (e)) = [a~,.<~>, be,.<~>]. 

It follows from (4), (5), (6), (9), (10) that (*) of Lemma 5.3 holds, and from (7), 

(9), (10) that (**) holds. 
[] 

We turn now to results of the second type, i.e., we try to answer the following 

sort of a question: 

Given that X is a win for D in a certain game, how thin should X be 9. All our 

results refer to games where S is restricted to choose only rationals, and the 

proofs are mostly based on what we call the method of z-sequences. We define, 

in each particular case, a notion of z-sequence for each z e R. A z-sequence ~/ 

is a certain finite sequence of rationals; it is some initial segment of a 

play where D's winning strategy is used. Then we show that for each z e X, 

a z-sequence exists. It follows that if A~ is the set of all reals z such that r/is a 

z-sequence, then X _ U , A , ,  and the union is taken over a countable set. It 

remains to find out how small A, should be. In some cases (aFt, F~), we can show 

that A, is at most denumerable, and hence so is X. In the other case (aFt), all we 

can show is that A, is nowhere dense, hence X is of the first category. 

THEOREM 5.6. I f  ~F~(X) is a win for  D, then X is at most denumerable. 

PROOF. Let z: Q * ~ { -  1, 1} be a winning strategy for D in oF~(X). 

r l = ( q o , . . . , q n _ l ) ~ Q *  is a z-sequence if for 0 < i < n ,  q~ = q i - l +  

z(fl (i)) " I q i -  q~-l[" s ~ R ~' is a play where D uses z that obeys a iff for all 

n e ~o, s(n) is a z-sequence and Sn~ g,(s(n)) (see Definition 5.0). 

Let z be a real number. Define a one place predicate M~ on Q* as follows. 

Let ~/ = (qo, "", q , -1)  ~ Q~. Then M~(r/) if and only if: 

(i) ~/is a z-sequence 

(ii) ql ~ g,,(~l(i)) for i < n 

(iii) z E go(r/). 

Observe that M~(~/) holds for every ~/e Qo u Q~. Assume that r/~ Q~. r/ is a z- 

sequence iff: 
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(0) Ms(t/) 

(1) for every fi > 0 there is a q ~ Q such that [z - q [ < 6 and Mz(t/�9 (q>) 

(2) for every q e Q such that [z - q ] < a n and Mz(t/�9 (q>) there is a fi > 0 so 

that if Mz(t/. (q, q ' ))  then ] z - q'l ---- 6. 
The theorem will follow from the following two claims. 

CLAIM 1. I f  no z-sequence exists, then z e X. 

CLAIM 2. A~ = { z e R :  t~ is a z-sequence} is at most denumerable. 

PROOF or  CLAIM 1. Define s e Q'~ as follows. (0) and (1) of the definition of a 

z-sequence are true for ~ .  Assume, by induction, that s(n) e Q" is already defined 

so that (0) and (1) hold. Since s(n) is not a z-sequence, (2) fails. Hence there is a 

qn e Q such that M~(s(n) �9 (qn>), and also (1) holds for s(n).  (q,>. Put s(n) = qn" 

Since Mz(s(n)) holds for all n, s is a play that obeys a where D uses z whose limit 

is z. Since z is a winning strategy, it follows that z r X. 

PROOF OF CLAIM 2. We shall show that if I t /=  n, then every open interval 

9 '  - 9,(t/) with rag' < an contains at most two elements of  A~. 

Indeed, assume that z ' , z , z "  e A~, z'  < z < z", and z" - z '  < an. By (1) of the 

definition applied to z, we can find a q ~ Q such that z'  < q < z" and Mz(t/�9 (q>). 

Since g.(t/ �9 (q ) )  = g,(t/) c~ (q - a n, q + a.), it follows that also Mz,(t/�9 (q ) )  and 

Mr( t / �9  (q>). By (2) of the definition, applied to z '  and z", there are 6' and 6" 

so that for every q such that M ~ , ( t / . ( q , q ) ) ,  [z - q  [ =>6' and for every 

q" such that Mz,,(t/ �9 ( q, q") ), ] z" - q" ] >= 6". But this is clearly impossible, since 

if, say, z(t/�9 (q>) = 1, any q' e g.(t/�9 (q>) such that [ z' - q'] < 6' and q' < q 

satisfies M~,(t/�9 (q, q'>). 

COROLLARY 5.7. I f  any of .F~(X), .F~ i~(X),  ~V(x)  is a win for D, then 

X is at most denumerable. 

THEOREM 5.8. I fFg (X)  is a win for  D, then X is at most denumerable. 

PROOf. Let z: Q* x Q+ ~ ( - 1,1} be a winning strategy for D in F~(X). 

For q = (t /o," ' , t /n-1)e(t2*)",  (Q* = Q * - { ~ } ) .  Put 0 = t/o " t / l ' " t / , -~  and 

for t/' e Q*, t/' ~ ~ ,  fit/') denotes the last member of  t/'. Define #(t/) for t/~ (Q*)* 

by # ( E I ) = R ,  and if t/e (Q*) ~, t / 'e  Q* then # ( t / . ( t / ' ) )=g( t / )n  ( t ( t / ' ) -1/ (n  + 1), 

t ( t / ' )+ l / (n+l ) ) ,  t / ' = ( q o , " ' , q n - x > e Q *  is a z-sequence if for 0 < i < n ,  

q i - -  q,-1 + z(f/'(i), ]q,-q,-~l)" lq , -  q,-ll- 
Let z be a real number, i / =  (t/o, " " , t / . - 1 ) e  (Q*)*. Then M~(t/) if and only if: 
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(i) ~ is a z-sequence. 

(ii) all entries of t/i belong to g(q(i)), i < n 

(iii) z e g(t/). 

~/e (Q_*) n is a z-sequence iff: 

(0) Mz(tl) 

(1) for every 6 > 0 there is an t/' ~ 0* such that I t ( n ' ) -  z I < 6 and Mz(t/�9 ( t / ' ))  

(2) for every t / '~Q* such that I t(n') - z I < 1(/n+1) and Mz(~/'(t/ ')) there 

is a 6 > 0 such that for every ~/"e Q'*, if Mz(t/�9 (r/',t/")) then ] fir/") - z I > 6. 

CLMM 1. I f  no z-sequence exists then z q~ X. 

PROOF OF CLAIM 1. Assume that no z-sequence exists. Define u ~(Q*)~' as 

follows. ~ = u(0) satisfies (0) and (1). Assume that u(n) is already defined so 

that (0), (1) are satisfied" Since u(n)is  not a z-sequence, (2)doesnot  hold. Hence 

we can pick r/' n ~ Q* so that if(n). (t/'n) also satisfy (0), (1) and we put u(n)=rln. 

Let s e Q,O be the unique element that extends ~(n) for all n. But M~(u(n)) or all n 

implies that s is a play in F~ where D uses z, s is convergent and its limit is z. 

Since z is a winning strategy, it follows that z ~ X. 

CLAIM 2. A n = (z: t/ is a z-sequence} is at most denumerable. 

PROOF OF CLAIM 2. Assume that t/~ (Q*y. We shall show that no open sub- 

interval g' of g(t/) with mg' < 1/(n + 1) contains more than two members of  A n. 

Indeed, assume that z' < z < z" ,  z ' , z , z "  ~gO1) n A  , and z "  - z'  < l / (n  + 1). 

Apply (1) for z to pick an ~/' E Q* such that Mz(t/�9 ( t / ' ))  and z' < t(t/') < z". 

It follows that also Mz,(t/(r/')), Mz,Q/�9 (r/')). Let 6', 6" be as guaranteed by (2) 

for z', z" respectively. But t(~/') ~ CON ((z', z' + 6') U (z" - 6", z")). By Lemma 3.3, 

one can find t/"~ Q* such that t(tl")~(z , z  +6 ) ~3 ( z " - 6 " , z " )  and M~,(r/.(t/,t/")), 

Mz,,(rl �9 Q/',rf ')), a contradiction. 
[] 

COROLLARY 5.9. I f  any of  F~(X), FS(x) is a win for  D then X is at most 

denumerable. 

TUEOREM 5.10. I f  ,F~(X) is a win for  D, then X is o f  the first category. 

PROOf. Let z: Q* x Q+ ~ {  - 1,1} be a winning strategy for D in ,F~(X). 

r l = ( q o , ' " , q n - ~ ) ~ Q *  is a z-sequence if for 0 <  i < n, q~ = qi-1 + 

z(q(i),lqi_q,_,]). [q,- qi-~[. 
"Mz(t/)" and " t / i s  a z-sequence" are defined as in the proof of  Theorem 5.6. 

So is the proof of 



Vol. 14, 1973 SIZE DIRECTION GAMES 439 

CLAIM 1. If there is no z-sequence, then z q~ X.  

However, by Theorem 5.5, we cannot expect here that Art will be countable. 

CLAIM 2. Art = {z: r/ is a z-sequence} is nowhere dense. 

PROOF OF CLAIM 2. Assume that r/~ Q'. Let z ~ A,, and let g be any open 

interval containing z. We have to find an open nonempty interval g '  c g such that 

g '  n Art -- ~ .  We may assume that g c ga(~/) and that mg < a,. Let 5o > 0 be 

defined by 350 = d(z, R - g) > 0. By (1) of the definition of  a z-sequence, pick 

q ~ Q such that [ z - q I < 50 and Mz(r/�9 (q)) .  By (2) there is a 5 > 0 such that if 

Mz(rl(q, q ' ) )  then I z - q' I >-- 5. It is clear that t~ < 50. Now define an open 

interval g '  by: g' = {q - x: q + x ~ ( z  - 5 ,z  + 5)}. Then g '  ~ g and for every 

q' e g'  c~ Q we must have M~(~/�9 (q, q ')) .  It follows that g ' n  Art = ~ .  
[] 

COROLLARY 5.11. I f  any of aFt(X), ,FS(X), Y~(X), r'S(x) is a win for D, then 

X is of  thefirst category. 

By Table 1, we know that i f X  is a win for O in~F s, i ~  or F s, then also X does 

not include a perfect subset. A little more can be said if i~(X)  is a win for D. 

THEOREM 5.11. I f  Fg(X) is a win for D, P is a perfect set, then there is 

a perfect set P'  ~ P such that P' ~ X = ~ .  

PROOF. Let z be a winning strategy for D in F~(X). Let J be any bis such that 

KJ ~ P that obeys, say, the con (1/(n + 1):n < oJ) (see Definition4.0). Define a 

sequence (r,:  n < co) of natural numbers as follows: ro = 0, and for n > 0: 

r, = max{n(Fj(~), Fj(~')):  ~,~'~2"} (see Lemma 3.3, Definition 4.3). r, > 0 

for n > 0. Put k~ = Y~i___~ ri and define a cona  ~ = (am: m < ~ )  by: am=l/(n+ 1), 

k,, < m < k . + l .  

z is actually a family {z.: a is a con} where %: Q* x Q+ -~ { - 1,1} is a winning 

strategy for D in .F~(X). Put z' = z~o. We shall define by induction a mapping 

~b: 2* -~ 2", t/r ~ Q*, qr ~ Q, a bis J '  such that: 

(0) for 3, ~' ~ 2", ~ -< ~' iff q~(~)-< q~(~') and lq~(~) = 21~ 

(1) 

(2) 

(3) 

(4) 

Let q, e Fs) ~ )  n Q be an arbitrary 
= 

~/r is a z'-sequence (see the proof of  Theorem 5.10) 

qr = t(r/r (see the proof of  Theorem 5.8) 

t/r obeys a ~ (see Definition 5.0) 

qr e Fa(q~(r c J(~b(r = J'(~) (see Definition 4.0, 4.3). 

element, and put r/, = ( q , ) q ~ ( N ) = ~ ,  
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Assume that q5(~), ~/~, qr and J'(~) are already defined so that (0)-(4) hold for 

~e 25 Put 

V ! 

V" = 

Fa(~b(~) �9 (0 ,0) )  u Fa(~b(r �9 (1, 1)) 

Fj(~b(~). (0, 1))W Fj(~b(~). (1,0)) .  

It is clear that q c e C O N  V" c CON V'. 

By Lemma 3.3, S has winning strategies a',  a" in the games Ge(V';  q~; r,+ 1), 

Go.(V";q~; rn+l) respectively. Assuming that qr is obtained already, z' tells us 

how D will play against a ' ,  a" in these games. We follow z' in these games at most 

rn+l moves until two z'-sequences r/~.<o>, ~/r that extend 17r are obtained so 

that for (~o,el),  (e~ ,e ' i )e2  2 such that (Co, el> precedes (e~,e'l) lexicographi- 

cally, we have, for q~.<o = t(~/r 

q~.<o> e F /4~(0  �9 <5o, 51)) 

qr > e Fj(~b(~) �9 (ed, 5;)). 

We put now ~b(~. (0>) = ~b(~). (5o, e~), ~b(~. (1>) = ~b(~). (eg,5o) and 

J'(~ �9 (e>) = J(~b(~ �9 (5))), e e 2. It is clear that (0)-(4) are carried over. Now, 

clearly P '  = K J  ~ K J  c P. But if s e P' ,  then for some a e 2 '~ {s} = n~ <o,J'(~(n)). 

Let s e Q,O be the unique element that extends t/~(~) for all n; then s is a play in 

,o F~(X) where z' is used, and its outcome is s. Since z' is a winning strategy, we 

conclude that s ~ X. So, P '  n X = ~ .  
[]  

Observe that we actually proved the following: 

THEOREM 5.11'. Let P be a perfect set. Then there is a con a such that for  

every X ~ R, if~ is a win for  D, then there is a perfect subset P'  o f  P such 

that P'  C~ X = ~5 . 

COROLt.ARY 5.12. I f  any of  r~(X), i~s(x) is a win fo rD,  then every perfect set 

P has a perfect subset P'  such that P' N X  = 2J. 

By Theorem 5.5 and Remark 5.4, Theorem 5.11 is not true with ~F~Sor evenwith 

,F* instead of  1~. It is an open problem whether it is true with ~F s. We conclude, 

however, from Theorem 4.7 and the fact that every perfect set has 2 ~~ perfect 

mutually disjoint subsets, that if ~ is a win for D, then for every perfect P, 

P - X has the power of the continuum. 
A weakened form of Theorem 5.11 for ,F~(X) follows from Theorem 5.10. 
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COROLLARY 5.13. Let a be a con. I f  aF~(X ) is a win for  D, then every nonempty 

open interval has a perfect subset which is disjoint f rom X.  

We summarize what we know of  X given that aFt (X)  or aFs(X) is a win for D: 

COROLLARY 5.14. Let a be a con. I f  either of  ~FS(x), ,F~(X) is a win for  D then 

X is o f thef irs t  category and hence every nonempty interval has a perfect subset 

that is disjoint f rom X.  I f  aFS(x) is a win for  D then, in addition, every perfect 

set has a subset of  the power of  the continuum that is disjoint f rom X.  

We mention that the last statement does not hold with ,F~, by Theorem 5.5. 

COROLLARY 5.15. I f  neither X nor R - X  include a perfect suvbset, then X is 

nondetermined in any of  our games, an exception being F ~ and F~, where X is 

a win for  S. 
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